首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   71710篇
  免费   7924篇
  国内免费   8116篇
化学   43943篇
晶体学   377篇
力学   2921篇
综合类   910篇
数学   16675篇
物理学   22924篇
  2024年   119篇
  2023年   869篇
  2022年   1316篇
  2021年   2414篇
  2020年   2493篇
  2019年   2335篇
  2018年   1826篇
  2017年   2006篇
  2016年   2662篇
  2015年   2635篇
  2014年   3305篇
  2013年   5637篇
  2012年   3873篇
  2011年   4267篇
  2010年   3624篇
  2009年   4613篇
  2008年   4702篇
  2007年   5001篇
  2006年   4180篇
  2005年   3198篇
  2004年   2760篇
  2003年   2686篇
  2002年   2248篇
  2001年   1999篇
  2000年   1684篇
  1999年   1375篇
  1998年   1245篇
  1997年   1046篇
  1996年   959篇
  1995年   898篇
  1994年   839篇
  1993年   825篇
  1992年   782篇
  1991年   558篇
  1990年   498篇
  1989年   440篇
  1988年   437篇
  1987年   376篇
  1986年   340篇
  1985年   462篇
  1984年   365篇
  1983年   199篇
  1982年   389篇
  1981年   560篇
  1980年   505篇
  1979年   543篇
  1978年   443篇
  1977年   353篇
  1976年   307篇
  1973年   198篇
排序方式: 共有10000条查询结果,搜索用时 93 毫秒
71.
《Mendeleev Communications》2022,32(4):510-513
The influence of textural characteristics on the catalytic performance of supported KCoMoS2 catalysts was explored to provide essential information for the design of better catalysts for the synthesis of higher alcohols (C1–C5) from syngas. Syngas conversion was carried out over KCoMoS2 catalysts supported on various mesoporous (alumina and carbon-coated alumina) and microporous (two types of powdered activated carbons) materials. The experimental results show that catalysts supported over microporous materials exhibit higher catalytic activity in HAS from syngas than catalysts based on mesoporous materials.  相似文献   
72.
CeO2-based catalysts are widely studied in catalysis fields. Developing one novel synthetic approach to increase the intimate contact between CeO2 and secondary species is of particular importance for enhancing catalytic activities. Herein, an interfacial reaction between metal–organic framework (MOF)-derived carbon and KMnO4 to synthesize CeO2−MnO2, in which carbon is derived from the pyrolysis of Ce-MOFs under an inert atmosphere, is described. The MOF-derived carbon is found to restrain the growth of CeO2 crystallites under a high calcination temperature and, more importantly, intimate contact within CeO2/C is conveyed to CeO2/MnO2 after the interfacial reaction; this is responsible for the high catalytic activity of CeO2−MnO2 towards CO oxidation.  相似文献   
73.
The topology of the molecular electron density of benzene dithiol gold cluster complex Au4−S−C6H4−S′−Au′4 changed when relativistic corrections were made and the structure was close to a minimum of the Born–Oppenheimer energy surface. Specifically, new bond paths between hydrogen atoms on the benzene ring and gold atoms appeared, indicating that there is a favorable interaction between these atoms at the relativistic level. This is consistent with the observation that gold becomes a better electron acceptor when relativistic corrections are applied. In addition to relativistic effects, here, we establish the sensitivity of molecular topology to basis sets and convergence thresholds for geometry optimization.  相似文献   
74.
Heavy metal ions are harmful to aquatic life and humans owing to their high toxicity and non‐biodegradability, so their removal from wastewater is an important task. Therefore, this work focuses on designing suitable, simple and economical nanosensors to detect and remove these metal ions with high selectivity and sensitivity. Based on this idea, different types of mesoporous materials such as hexagonal SBA‐15, cubic SBA‐16 and spherical MCM‐41, their chloro‐functionalized derivatives, as well as 4‐(4‐nitro‐phenylazo)‐naphthalen‐1‐ol (NPAN) azo dye have been synthesized, with the aim of designing some optical nanosensors for metal ions sensing applications. The mentioned azo dye has been anchored into the chloro‐functionalized mesoporous materials. The designed nanosensors were characterized using scanning and transmission electron microscopy as well as Fourier transform infrared and UV–visible spectral analysis, nitrogen adsorption–desorption isotherms, low‐angle X‐ray diffraction and thermogravimetric analyses. Their optical sensing to various toxic metal ions such as Cd (II), Hg (II), Mn (II), Fe (II), Zn (II) and Pb (II) at different values of pH (1.1, 4.9, 7 and 12) was investigated. The optimization of experimental conditions, including the effect of pH and metal ion concentration, was examined. The experimental results showed that the solution pH had a major impact on metal ion detection. The optical nanosensors respond well to the tested metal ions, as reflected by the enhancement in both absorption and emission spectra upon adding different concentrations of the metal salts and were fully reversible on adding ethylene diamine tetra acetic acid or citric acid to the formed complexes. High values of the binding constants for the designed nanosensors were observed at pHs 7 and 12, confirming the strong chelation of different metals to the nanosensor at these pHs. Also, high binding constants and sensitivity were observed for NPAN‐MCM‐41 as a nanosensor to detect the different metal ions. From the obtained results, we succeeded in transforming the harmful azo dye into an environmentally friendly form via designing of the optical nanosensors used to detect toxic metal ions in wastewater with high sensitivity.  相似文献   
75.
Metal oxide photocatalysts (MOPCs) decompose organic molecules under illumination. However, the application of MOPCs in industry and research is currently limited by their intrinsic hydrophilicity because MOPCs can be wetted by most liquids. To achieve liquid repellency, the surface needs to possess a low surface energy, but most organic molecules with low surface energy are degraded by photocatalytic activity. Herein, current methods to achieve liquid repellency on MOPCs, while preventing degradation of hydrophobic coatings, are reviewed. Classically, composite materials containing MOPCs and hydrophobic organic compounds possess good liquid repellency. However, composites normally form irregular coatings and are hard to prepare on surfaces such as those that are mesoporous or nanostructured. In addition, the adhesion of composites to substrates is often weak, resulting in delamination. Recent studies have shown that the direct grafting reaction of polydimethylsiloxane (PDMS) from silicone oil (methyl-terminated PDMS) under illumination results in a stable polymer brush. This easy and simple grafting method allows us to create stable liquid-repellent surfaces on MOPCs of various types, structures, and sizes. In particular, super-liquid-repellent drops with an underlying air layer can be created on PDMS-grafted nano-/microstructured MOPCs. Potential applications of surfaces combining liquid repellency and photocatalytic activity are also discussed; thus offering new ways of using MOPCs in a wider range of applications.  相似文献   
76.
The radius of spatial analyticity for solutions of the KdV equation is studied. It is shown that the analyticity radius does not decay faster than t?1/4 as time t goes to infinity. This improves the works of Selberg and da Silva (2017) [30] and Tesfahun (2017) [34]. Our strategy mainly relies on a higher order almost conservation law in Gevrey spaces, which is inspired by the I-method.  相似文献   
77.
We report an innovative, sustainable and straightforward protocol for the synthesis of N,N-diarylamides equipped with nonprotected hydroxyl groups by using electrosynthesis. The concept allows the application of various substrates furnishing diarylamides with yields up to 57 % within a single and direct electrolytic protocol. The method is thereby easy to conduct in an undivided cell with constant current conditions offering a versatile and short-cut alternative to conventional pathways.  相似文献   
78.
CO2 is considered as the primary greenhouse gas, resulting in a series of serious environmental problems that affect people's life and health. Carbon capture and sequestration has been implemented as one of the most appealing pathways to control and use CO2. Here, we rationally integrate various functional sites within the confined nanospace of a microporous metal–organic framework (MOF) material, which is constructed by mixed-ligand strategy based on metal-adeninate vertices. It not only exhibits excellent stability but also can efficiently transform CO2 and epoxides to cyclic carbonates under mild and cocatalyst-free conditions. Additionally, this catalyst shows extraordinary recyclability for the CO2 cycloaddition reaction.  相似文献   
79.
Farnesene (Far) is a bio‐based terpene monomer that is similar in structure to commercially used dienes like butadiene and isoprene. Nitroxide‐mediated polymerization (NMP) is adept for the polymerization of dienes, but not particularly effective at controlling the polymerization of methacrylates using commercial nitroxides. In this study, Far is statistically copolymerized with a functional methacrylate, glycidyl methacrylate (GMA), by NMP using N‐succinimidyl modified commercial BlocBuilder (NHS‐BB) initiator. Reactivity ratios are determined to be r Far = 0.54 ± 0.04 and r GMA = 0.24 ± 0.02. The ability of the poly(Far‐stat‐GMA) chains to reinitiate for chain extension with styrene showed a clear shift in molecular weight and monomodal distribution. Copolymerizations using a new alkoxyamine, Dispolreg 007 (D7), is explored as it is shown to homopolymerize methacrylates, but not yet reported for statistical copolymerizations. Bimodal molecular weight distributions are observed when an equimolar ratio of Far and GMA is copolymerized with D7 due to slow decomposition of the initiator, but chain ends are active as shown by successful chain extension with styrene. Both NHS‐BB and D7 initiators are used to synthesize poly[Far‐b‐(GMA‐stat‐Far)] and poly(Far‐b‐GMA) diblock copolymers. While the NHS‐BB initiated polymer chains have lower dispersity, D7 exhibits more linear polymerization kinetics and maintains more active chain ends.  相似文献   
80.
This study was carried out to design phenothiazine based dyes by incorporating electron-deficient thiadiazole derivatives as π-spacer. Density functional theory and time-dependent density functional theory calculations of the geometries, electronic structures and absorption spectra of the dyes before and after binding to titanium oxide were carried out. Effects of the electron-deficient units on the spectra and electrochemical properties have been investigated. Compared with the reference compound CS1A, Dyes 1–4 display remarkably enhanced spectral responses in the red portion of the solar spectrum. The newly designed dyes demonstrate desirable energetic and spectroscopic parameters, and may lead to efficient metal-free organic dye sensitizers for DSSCs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号